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A technique for measuring the spatio-temporal distribution of convective heat transfer has been devel-
oped using a test surface fabricated from a thin foil heated electrically. If the heat capacity of the test sur-
face is sufficiently low, the fluctuating temperature on the foil can be measured using high-frame-rate
infrared thermography. This method, however, has an inherent problem in that the temperature on
the test surface attenuates both in time and space due to thermal inertia and conduction. In the present
study, the frequency response and the spatial resolution of a thin foil were examined analytically consid-
ering heat losses. In order to derive general relationships, non-dimensional variables of fluctuating fre-
quency and spatial wavenumber were introduced to formulate the temporal and spatial amplitudes of
the temperature on the test surface. Based on these relationships, the upper limits on the detectable fluc-
tuating frequency and spatial wavenumber were successfully formulated using governing parameters of
the measurement system. This enables us to evaluate quantitatively the reliability of the heat transfer
measurement by infrared thermography. The values, evaluated here for the practical conditions, indi-
cated that this measurement technique is promising for investigating the spatio-temporal behavior of
heat transfer caused by flow turbulence.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Convective heat transfer is, by nature, generally nonuniform
and unsteady, a fact reflected by three-dimensional flow near a
wall. However, most experimental studies concerning convective
heat transfer have been performed in a time-averaged manner or
using one-point measurements. This frequently results in poor
understanding of the heat transfer mechanisms.

Measurement techniques for the temporal and spatial charac-
teristics of heat transfer have been developed using liquid crystals
[1] or using infrared thermography [2,3], by employing a thin test
surface having a low heat capacity. However, the major problem
with these measurements is attenuation and phase delay of the
temperature fluctuation due to thermal inertia of the test surface.
This becomes serious for higher fluctuating frequencies, for which
the fluctuation amplitude weakens and ultimately becomes indis-
tinguishable from noise. In addition, lateral conduction through
the test surface attenuates the amplitude of the spatial tempera-
ture distribution. This becomes serious for smaller wavelength
(higher wavenumber). Therefore, it is important to know both
the upper limits of the fluctuating frequency and the spatial wave-
number detectable by the measurement.
ll rights reserved.

0.
In this study, the frequency response and the spatial resolution
of a thin foil for heat transfer measurement were examined analyt-
ically considering heat losses. In order to derive general relation-
ships, non-dimensional variables of fluctuating frequency and
spatial wavenumber were introduced to formulate the amplitude
of temperature fluctuation and/or distribution on the test surface.
Based on these relationships, the upper limits on the detectable
fluctuating frequency and spatial wavenumber were successfully
formulated as a function of the temperature resolution (noise-
equivalent temperature difference) of infrared measurements for
a blackbody.
2. Governing equations

Fig. 1 shows a schematic model for heat transfer measurement.
The test surface, which is exposed to air flow, is fabricated from a
thin metallic foil (thickness d, specific heat c, density q, thermal
conductivity k, and total emissivity et). An instantaneous tempera-
ture distribution and its fluctuation on the test surface can be mea-
sured using infrared thermography through the air-stream, which
is transparent for infrared radiation. Inside the foil, there is a high-
conductivity plate (total emissivity etc) to impose a thermal bound-
ary condition of a steady and uniform temperature. Between the
foil and the high-conductivity plate is some material of low
conductivity and low heat capacity, such as still air, forming an
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Nomenclature

b wavelength of spatial distribution (m)
c specific heat (J/kg K)
f, fc frequency, cut-off frequency (Hz)
h heat transfer coefficient (W/m2 K)
ht total heat transfer coefficient including conduction and

radiation (W/m2 K)
k wavenumber = 2p/b (m�1)
_q heat flux (W/m2)
T temperature (K)
T0, Tw free stream temperature, wall temperature (K)
DTIR temperature resolution of infrared thermography for a

non-blackbody (K)
DTIRO noise-equivalent temperature difference of infrared

thermography for a blackbody (K)
t time (s)
x, y, z tangential, normal and spanwise coordinates
a thermal diffusivity = k/cq (m2/s)
b space resolution (m)
d thickness (m)

et total emissivity
eIR spectral emissivity for infrared thermograph
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x=2a

p
(m�1)

k thermal conductivity of fluid (W/m K)
m kinematic viscosity (m2/s)
q density (kg/m3)
s time constant (s)
x angular frequency = 2pf (rad/s)

Subscripts
c, i high-conductivity plate, insulating layer
cd, cv, rd conduction, convection, radiation
f, s frequency response, space resolution

Superscripts
(�) time- or space-averaged value
(~) non-dimensional value
()* effective value
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insulating layer (thickness di, specific heat ci, density qi, thermal
conductivity ki).

The tangential and normal directions with respect to the test
surface correspond to x and y coordinates, respectively. Assuming
that the temperature is uniform along its thickness and in the
spanwise (z) direction, the heat balance on the thin foil can be ex-
pressed as:

cqd
@Tw

@t
¼ kd

@2Tw

@x2 þ _q ðy ¼ 0Þ: ð1Þ

Here, Tw is local and instantaneous temperature of the thin foil. The
heat flux, _q, is given by

_q ¼ _qin � _qcv � _qcd � _qrd � _qrdi; ð2Þ

where _qin is the input heat flux to the thin foil due to Joule heating,
_qcv and _qcd are heat fluxes from the thin foil due to convection and
conduction, respectively, and _qrd is radiation heat flux to outside the
foil. If the insulating layer is transparent for infrared radiation, as is
air, radiation heat flux _qrdi occurs to the inside. The above heat
fluxes are expressed as follows:

_qcv ¼ hðTw � T0Þ ð3Þ

_qcd ¼ �ki
dT
dy

� �
y¼0þ

ð4Þ

_qrd ¼ etrðT4
w � T4

0Þ ð5Þ

_qrdi ¼
rðT4

w � T4
c Þ

1=et þ 1=etc � 1
ð6Þ

Here, h is the heat transfer coefficient due to convection to the
stream outside, T0 is the free stream temperature, Tc is surface tem-
Fig. 1. Schematic model for measurement of heat transfer to air.
perature of the high-conductivity plate, and r is the Stefan–Boltz-
mann constant.

Heat conduction in the insulating layer is expressed as:

ciqi
@T
@t
¼ ki

@2T
@x2 þ

@2T
@y2

 !
ð0 < y < diÞ: ð7Þ

The frequency response and the spatial resolution of Tw for the
heat transfer to the free stream can be calculated using Eqs. (1)–(7)
for arbitrary changes in the heat transfer coefficient in time and
space.

3. Analytical solutions without heat losses

3.1. Time constant

Assuming that the temperature is uniform in the x direction,
and that heat conduction _qcd and radiation _qrd and _qrdi are suffi-
ciently small, Eqs. (1)–(3) yield the following differential equation:

cqd
@Tw

@t
¼ _qin � hðTw � T0Þ: ð8Þ

Solving Eq. (8) yields the time constant s, which is expressed as:

s ¼ cqd
h
: ð9Þ
3.2. Spatial resolution

Assuming that the temperature on the test surface is steady and
has a sinusoidal distribution in the x direction, then:

Tw ¼ Tw þ DTw sin
2p
b

x
� �

; ð10Þ

where Tw and DTw are the mean and spatial amplitude of the tem-
perature of the thin foil, respectively, and b is the wavelength. If
_qcd; _qrd and _qrdi are sufficiently small, Eqs. (1)–(3) yield the follow-
ing equation:

hðTw � T0Þ ¼ _qcv ¼ _qin þ kd
d2Tw

dx2 : ð11Þ

If the thin foil is thermally insulated, Eq. (11) reduces to:

hðTw0 � T0Þ ¼ _qcv ¼ _qin: ð12Þ



Fig. 2. Instantaneous temperature distribution in the insulating layer at
xt ¼ p=2 and Tw ¼ Tc .

Fig. 3. Relation between non-dimensional frequency ~f and non-dimensional
fluctuating amplitude ðD~TwÞ .
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Then, the temperature of the insulated surface Tw0 is calculated
from Eqs. (10)–(12) as

Tw0 ¼ Tw þ
kd
h

2p
b

� �2

þ 1

( )
DTw sin

2p
b

x
� �

: ð13Þ

A comparison between Eqs. (10) and (13) yields the attenuation
rate of the spatial amplitude due to lateral conduction through the
thin foil:

n ¼ 1
kd
h

2p
b

� �2 þ 1
: ð14Þ

A spatial resolution b can be defined as the wavelength b at which
the attenuation rate is 1/2:

b ¼ bðn¼1=2Þ ¼ 2p
ffiffiffiffiffi
kd
h

r
: ð15Þ

Incidentally, if the test surface has a two-dimensional tempera-
ture distribution such as:

Tw ¼ Tw þ DTw sin
2p
b

x
� �

sin
2p
b

z
� �

; ð16Þ

then the spatial resolution can be calculated as:

b2D ¼ 2p
ffiffiffiffiffiffiffiffi
2kd

h

r
: ð17Þ

This indicates that the spatial resolution for the 2D temperature dis-
tribution deteriorates by a factor of

ffiffiffi
2
p

.

4. General relations considering heat losses

4.1. Frequency response

Assuming that the temperature on the thin foil is uniform and
fluctuates sinusoidally in time, then:

Tw ¼ Tw þ DTw sinðxtÞ: ð18Þ

According to the solution of Carslaw and Jaeger [4], the temper-
ature in the slab (0 < y < di) with zero initial temperature and
T = sin(xt) at y = 0 and T = 0 at y = di is expressed as follows:

T ¼ A sinðxt þ /Þ

A ¼ sinhjiyð1þ iÞ
sinhjidið1þ iÞ

����
����; / ¼ arg

sinhjiyð1þ iÞ
sinhjidið1þ iÞ

� 	
; ji ¼

ffiffiffiffiffiffiffi
x

2ai

r
ð19Þ

Here, | | and arg{} denote the absolute value and the argument of a
complex number, respectively, and ai is thermal diffusivity of the
insulating layer.

Based on Eq. (19), the vertical temperature distribution in the
insulating layer, given by T ¼ Tw þ DTw sinðxtÞ at y = 0 and Tc at
y = di with initial temperature T ¼ TwðTc � TwÞy=di (linear distribu-
tion), is expressed as follows by superposition:

T ¼ Tw þ DTwA sinðxt þ /Þ þ ðTc � TwÞy=di ð20Þ

Fig. 2 shows the instantaneous temperature distribution in the
insulating layer at xt = p/2, at which the temperature of the thin
foil (y = 0) is maximum. The shape of the distribution depends only
on jidi. For lower frequencies (jidi < 1), the distribution can be as-
sumed linear, while for higher frequencies (jidi >> 1), the temper-
ature fluctuates only in the vicinity of the foil (y/di < 1/jidi).

Introducing the effective thickness of the insulating layer, d�i
� �

f ,
the temperature of which fluctuates with the thin foil:

ðd�i Þf � 0:5di ðjidi < 1Þ ð21Þ
ðd�i Þf � 0:5=ji ðjidi >> 1Þ: ð22Þ
The heat capacity of this region works as an additional heat
capacity that deteriorates the frequency response. Thus, the effec-
tive time constant can be defined as:

s� �
cqdþ ciqiðd

�
i Þf

ht
; ð23Þ

ht ¼
_qin

Tw � T0
: ð24Þ

Here, ht is total heat transfer coefficient from the thin foil, including
the effects of conduction and radiation. Then, the cut-off frequency
is defined as follows:

f �c ¼
1

2ps�
: ð25Þ

We introduce the following non-dimensional frequency and
non-dimensional amplitude of the temperature fluctuation:

~f ¼ f=f �c ð26Þ

ðD~TwÞf ¼
ðDTwÞf
Tw � T0

ht

Dh
: ð27Þ

Here, ðD~TwÞf includes the factor ht=Dh to extend the value of ðD~TwÞf
to unity at the lower frequency in the absence of conductive or radi-
ative heat losses (see Fig. 3).

Next, we attempt to obtain the relation between ~f and ðD~TwÞf .
The fluctuating amplitude of the surface temperature, (DTw)f, can
be determined by solving the heat conduction equations of Eqs.
(1) and (7) by the finite difference method assuming a uniform
temperature in the x direction. The boundary condition on the foil
f



Fig. 4. Temperature distribution in the insulating layer at kx ¼ p=2 and Tw ¼ Tc .
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(y = 0) is given by the heat transfer coefficient which fluctuates
sinusoidally ½h ¼ hþ DhsinðxtÞ�. Fig. 3 plots the relation of ðD~TwÞf
versus ~f for practical conditions [5,6]. The thin foil is fabricated
from a titanium foil 2 lm thick (cqd = 4.7 J/m2 K, kd = 32 lW/K,
eIR = 0.183) or a stainless-steel foil 10 lm thick (cqd = 40 J/m2K,
kd = 160 lW/K, eIR = 0.15), the insulating layer is a still air layer
without convection, and the mean heat transfer coefficient is
h ¼ 20—50 W=m2 K. Since the amplitude of the heat transfer coef-
ficient Dh is almost independent of the relation if it is not too high,
the value is tentatively set to Dh=h ¼ 0:1. A parameter of ki=ðdihtÞ,
which represents the effect of conduction from the foil to the high-
conductivity plate through the insulating layer, is varied from 0 to
1.

For the lower frequency of ~f < 0:1; ðD~TwÞf approaches a con-
stant value:

ðD~TwÞf �
1

1þ ki=ðdihtÞ
ð~f < 0:1Þ: ð28Þ

In this case, the fluctuating amplitude decreases with increasing
ki=ðdihtÞ. For higher frequency values of ~f > 4, the value of ðD~TwÞf
depends only on ~f . Consequently, it simplifies to a single relation
(within ±3% for the present conditions):

ðD~TwÞf �
1
~f
ð~f > 4Þ: ð29Þ
Fig. 5. Relation between non-dimensional wavenumber ~k and non-dimensional
spatial amplitude ðD~TwÞs .
4.2. Spatial resolution

Assuming that the temperature on the foil is steady and has a
sinusoidal temperature distribution in the x direction, then:

Tw ¼ Tw þ DTw sinðkxÞ; k ¼ 2p=b: ð30Þ

Here, k is wavenumber of the spatial distribution.
The steady temperature in the rectangle (0 < y < di, 0 < x < b),

with temperature distribution of T = sin(kx) at y = 0 and T = 0 at
y = di is expressed as follows [4]:

T ¼ sinðkxÞ sinhðkðdi � yÞÞcosechðkdiÞ ð31Þ

Based on Eq. (31), the temperature distribution in the insulating
layer, given by Tw þ DTw sinðkxÞ at y = 0 and Tc at y = di, is expressed
as follows by superposition:

T ¼ Tw þ DTw sinðkxÞ sinhðkðdi � yÞÞcosechðkdiÞ þ ðTc � TwÞy=di

ð32Þ

Fig. 4 shows the vertical temperature distribution in the insulat-
ing layer at kx = p/2, at which the temperature of the thin foil
(y = 0) is maximum. The shape of the distribution depends only
on kdi. For the lower wavenumber (kdi < 1), the distribution can
be assumed linear, while for the higher wavenumber (kdi >> 1),
the distribution approaches an exponential function.

Now, we introduce an effective thickness of the insulating layer,
ðd�i Þs, the temperature of which is affected by the temperature dis-
tribution on the foil:

ðd�i Þs � di ðkdi < 1Þ ð33Þ
ðd�i Þs � 1=k ðkdi >> 1Þ ð34Þ

[The thickness ðd�i Þs was defined here so as to formulate the non-
dimensional relationship between ~k and ðD~TwÞs (see below). The
physical reason for the difference in the form from ðd�i Þf (see Eqs.
(21) and (22)) is not clear at present.] The heat conduction of this
region functions as an additional heat spreading parameter that re-
duces the spatial resolution. Thus, the effective spatial resolution
can be defined as:
b� � 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kdþ kiðd�i Þs

ht

s
: ð35Þ

Introduce a non-dimensional wavenumber and non-dimen-
sional amplitude of the spatial temperature distribution:

~k ¼ k
ð2p=b�Þ

¼ kb�

2p
ð36Þ

ðD~TwÞs ¼
ðDTwÞs
Tw � T0

ht

Dh
: ð37Þ

Here, 2p=b� corresponds to the cut-off wavenumber.
Next, we attempt to obtain a relation between ~k and ðD~TwÞs. The

spatial amplitude of the surface temperature, (DTw)s, can be deter-
mined by solving a steady-state solution of the heat conduction
equations of Eqs. (1) and (7) by the finite difference method. The
boundary condition on the foil (y = 0) is given by the sinusoidal dis-
tribution of the heat transfer coefficient along x ½h ¼ hþ DhsinðkxÞ�.
Fig. 5 plots the relation of ðD~TwÞs versus ~k for practical conditions
(see Section 4.1). For the lower wavenumber of ~k < 0:1; ðD~TwÞs
approaches a constant value of

ðD~TwÞs �
1

1þ ki=ðdihtÞ
ð~k < 0:1Þ: ð38Þ

In this case, the spatial amplitude decreases with increasing
ki=ðdihtÞ, which represents the heat conduction loss to the high-
conductivity plate. For the higher wavenumber of ~k > 4 the value
of ðD~TwÞs depends only on ~k. It, therefore, corresponds to a single
relation (within ±3% for the present conditions).
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ðD~TwÞs �
1
~k2

ð~k > 4Þ ð39Þ
Fig. 6. Upper limit of the fluctuating frequency detectable using infrared
measurements.
5. Detectable limits for infrared thermography

5.1. Temperature resolution

The present measurement is feasible if the amplitude of the
temperature fluctuation, (DTw)f, and the amplitude of the spatial
temperature distribution, (DTw)s, is greater than the temperature
resolution of infrared measurement, DTIR. In general, the tempera-
ture resolution of a product is specified as a value of noise-equiv-
alent temperature difference (NETD) for a blackbody, DTIR0.

The spectral emissive power detected by infrared thermograph,
EIR, can be assumed as follows:

EIRðTÞ ¼ eIRCTn; ð40Þ

where eIR is spectral emissivity for infrared thermograph, and C and
n are constants which depend on wavelength of infrared radiation
and so forth. For a blackbody, the noise amplitude of the emissive
power can be expressed as follows:

DEIR0ðTÞ ¼ CðT þ DTIR0Þn � CTn ð41Þ

Similarly, for a non-blackbody, the noise amplitude can be ex-
pressed as follows:

DEIRðTÞ ¼ eIRCðT þ DTIRÞn � eIRCTn ð42Þ

Since the noise intensity is independent of spectral emissivity
eIR, the values of DEIR0(T) and DEIR(T) are identical. This yields the
following relation using the binomial theorem with the assump-
tion of T >> DTIR0 and T >> DTIR.

DTIR ¼ DTIR0=eIR ð43Þ

Namely, the temperature resolution for a non-blackbody is inver-
sely proportional to eIR.

5.2. Upper limit of fluctuating frequency

Using Eqs. (22)–(27) and (29), the fluctuating amplitude, (DTw)f,
is generally expressed as follows for higher fluctuating frequency:

ðDTwÞf �
ðTw � T0ÞDh

2pcqdf þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pciqiki

p
f 0:5

; ð~f > 4 and kidi >> 1Þ ð44Þ

The fluctuation is detectable using infrared thermography for
(DTw)f > DTIR. This yields the following equation from Eqs. (43)
and (44).

f <
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
2A

 !2

A ¼ 2pcqd; B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pciqiki

p
; C ¼ �eIRDhðTw � T0Þ=DTIR0

ð45Þ

The maximum frequency of Eq. (45) at (DTw)f = DTIR corre-
sponds to the upper limit of the detectable fluctuating frequency,
fmax. The value of fmax is uniquely determined as a function of
DhðTw � T0Þ=DTIR0 if the thermophysical properties of the thin foil
and the insulating layer are specified.

Fig. 6 shows the relation of fmax for practical metallic foils for
heat transfer measurement to air, namely, a titanium foil of 2 lm
thick (cqd = 4.7 J/m2 K, eIR = 0.183) and a stainless-steel foil of
10 lm thick (cqd = 40 J/m2 K, eIR = 0.15). Also, the relation of the
carbon film of 5 lm thickness (cqd = 6.8 J/m2 K, eIR = 0.6), which
was tested in Ref. [7], is plotted because of its higher frequency
response and spatial resolution, although it has some defects in
practical use at present. The insulating layer is assumed to be a still
air layer (ci = 1007 J/kg K, qi = 1.18 kg/m3, ki = 0.0265 W/m K),
which has low heat capacity and thermal conductivity.

For example, a practical condition likely to appear in flow of low-
velocity turbulent air [6] (DhðTw � T0Þ=DTIR0 ¼ 6000 W=m2 K;
Dh ¼ 5 W=m2 K; Tw � T0 ¼ 30 K, and DTIR0 = 0.025 K), gives the val-
ues fmax = 35 Hz for the 2 lm thick titanium foil and fmax = 83 Hz for
the 5 lm thick carbon film. Therefore, the unsteady heat transfer
caused by flow turbulence can be detected using this measurement
technique, although it may be limited to fluctuations due to large-
scale structure, as suggested in Ref. [6].

The value of fmax increases with decreasing cqd and DTIR0, and
with increasing eIR, Dh, and Tw � T0. The improvements of both
the infrared thermograph (decreasing DTIR0 with increasing frame
rate) and the thin foil (decreasing cqd and/or increasing eIR) will
improve the measurement.

5.3. Upper limit of spatial wavenumber

Using Eqs. (34)–(37) and (39), the spatial amplitude, (DTw)s, is
generally expressed as follows for higher wavenumber:

ðDTwÞs �
ðTw � T0ÞDh

kdk2 þ kik
; ð~k > 4 and kdi >> 1Þ: ð46Þ

The spatial distribution is detectable using infrared thermogra-
phy for (DTw)s > DTIR. This yields the following equation using Eqs.
(43) and (46).

k <
�ki þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

i þ 4kdeIRfDhðTw � T0Þ=DTIR0g
q

2kd
ð47Þ

The maximum wavenumber of Eq. (47) at (DTw)f = DTIR corre-
sponds to the upper limit of the detectable spatial wavenumber,
kmax. If thermophysical properties of the thin foil and the insulating
layer are specified, the value of kmax is uniquely determined as a
function of Dh Tw � T0

� �
=DTIR0, as well as fmax.

Fig. 7 shows the relation for kmax for the titanium foil of 2 lm
thickness (kd = 32 lW/K, eIR = 0.183), the stainless-steel foil of
10 lm thickness (kd = 160 lW/K, eIR = 0.15), and the carbon film
of 5 lm thickness (kd = 6.5 lW/K, eIR = 0.6). The insulating layer is
assumed to be a still air layer (ki = 0.0265 W/m K). For example,
at Dh Tw � T0

� �
=DTIR0 ¼ 6000 W=m2 K [6], the value of kmax (bmin)

is 5.5 mm�1 (1.2 mm) for the 2 lm thick titanium foil, and
22 mm�1 (0.3 mm) for the 5 lm thick carbon film. Therefore, the
spatial structure of the heat transfer coefficient caused by flow tur-
bulence can be detected using this measurement technique,
although it may be limited to the large-scale structure, as sug-
gested in Ref. [6].



Fig. 7. Upper limit of the spatial wavenumber detectable using infrared measure-
ments.
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The value of kmax increases with decreasing kd and DTIR0, and
with increasing eIR, Dh, and TwT0. The improvements of both the
infrared thermograph (decreasing DTIR0 with increasing pixel reso-
lution) and the thin foil (decreasing kd and/or increasing eIR) will
improve the measurement.

6. Conclusions

The frequency response and the spatial resolution of a thin foil
for measurements of the spatio-temporal distribution of convec-
tive heat transfer were investigated analytically. The results are
summarized as follows:

(1) The time constant s and the spatial resolution b without heat
losses are expressed as follows:
s ¼ cqd
h
; b ¼ 2p

ffiffiffiffiffi
kd
h

r
:

(2) The effective values of the time constant and the spatial res-
olution, considering heat losses, can be expressed as follows:
s� �
cqdþ ciqiðd

�
i Þf

ht

ðdÞ�i Þf � 0:5di; ðjidi < 1Þ
ðd�i Þf � 0:5=ki; ðjidi >> 1Þ

b� � 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kdþ kiðd�i Þs

ht

s
ðd�i Þs � di; ðkdi < 1Þ
ðd�i Þs � 1=k; ðkdi >> 1Þ
(3) The upper limits of the fluctuating frequency, fmax, and the
spatial wavenumber, kmax, which are detectable using infra-
red thermography, can be expressed as follows:
fmax ¼
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
2A

 !2

A ¼ 2pcqd; B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pciqiki

p
; C ¼ �eIRDhðTw � T0Þ=DTIR0

kmax ¼
�ki þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

i þ 4kdeIRfDhðTw � T0Þ=DTIR0g
q

2kd
The values of fmax and kmax are uniquely determined as functions
of DhðTw � T0Þ=DTIR0, if thermophysical properties of the thin foil
(c, q, d, k, eIR) and the insulating layer (ci, qi, ki) are specified.
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